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A P P L I C A T I O N  OF BOUNDARY LAYER THEORY TO THE S O L U T I O N  OF 
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The possibility of applying the approximate integral method of boundary layer theory to the solution of 
problems with coupled heat and mass transfer is examined. Solutions are presented for a number of spe- 
cific problems. These include cases involving variable physical properties. 

Intensive development of irreversible thermodynamics has recently led to a quite rigorous theory for heat and mass 
transfer through porous media [1]. 

At the same time, linearization of the differential equations describing heat and mass transfer, which is valid for 
the so-called zonal treatment of volume and also for a narrow range of variation of temperature and moisture content, 
cannot, in general, be considered accurate enough. Moreover, the exact solutions that have been obtained for linear 
problems are, in a number of cases, very awkward in form and not amenable to analysis. Since exact solutions of non- 
linear problems can scarcely be obtained in closed form, it is expedient to resort to approximate methods of solution, 
among which shouId be included the calculus of variations and the integral methods of the theory of the hydrodynamic 
boundary layer. Integral methods have been applied lately to the solution of nonlinear and unsteady problems with in- 
dependent heat and mass transfer [2-6]. The basic principles are presented in the references cited. 

We shall examine the possibility of applying the one-parameter integral method, equivalent to the Karman- 
Pohlhausen method in boundary layer theory, to the solution of problems with combined heat and mass transfer in capri- 
lary-porous media. In the plane one-dimensional case the equations describing heat and mass transfer for dimensionless 
transfer potentials have the form: 

Ot = Ox t I "-O~x (1) 

O 0  0 ( A a O 0  _ _ A  OT ) 
o t  - o x  (2) 

We shall first illustrate the general method for the case of constant coefficients Ai: 

OT 02T 02 0 
- = A t  - -  - -  A s  " -  

Or Ox ~ Ox ~ ' 
(3) 

0 0 O ~ 0 O~T 
- -  = A3 A4 (4)  
Ot Ox 2 Ox 2 

We shall examine the boundary problem: 

T(O, t ) = O ( O ,  / ) = 1 ;  T ( x ,  O ) = O ( x ,  0 ) = 1 .  (5) 

Consider a thermal boundary layer of thickness dr and a boundary layer of mass transfer potential of thickness 
~ ,  described by the condition that the potentials are respectively equal to their initial values outside each layer. As 

in the case of heat transfer to a laminar flow over a body, when the thermal and dynamic boundary layers are examined 
concurrently [7], we may distinguish three cases, characterized by the ratio of the thicknes ~o and ~2" : 1) ~ = 
= 6| T < 1, 2)/~ = 1, and 3) ~ > 1. The condition ~ = 1 indicates that the heat and mass transfer potential fields are 
similar, the velocities of propagation of the T and ~ fronts being identical. For ~ < 1 the front of the heat transfer po- 
tential T leads that of the mass transfer potential @, and vice versa for/~ > 1. We shall examine separately the cases 

~-< 1 and/l > 1, 

Case g >- 1: Integrating (3) over the thickness ~r, land (4) over the thickness ~ and taking into account that when 
~qo> 1 0 = ~ ( x ,  0)==0,  and when~t > 1T =T(x, 0 )=0 ,  we obtain 
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1 d ~ r  2A: 2A2 
3 dt ~r it~r ' (6) 

1 d r 2A3 2A4 ~2 
3 d--7-= (7) 

It has been further assumed in deriving (6) and (7) that within each of the layers the potentials T and @ may be ap-  
proximated by means of quadratic polynomials satisfying the boundary and ini t ia l  conditions and having the form: 

x x 
T = ( 1 - - ~ t r ) ~ ;  O=(1- -~qo)2 ;  ~r = ; ~ o - -  �9 (8) 

~r &e 

Solution of these ordinary first-order differential  equations, with account for the ini t ia l  conditions &T (0) = 0 
and ~o (0)  = 0 gives: 

t 

o 

~o = [12 
: t A3,-A,  

o 

( 1 0 )  

Thus, we have the following relat ion for determining p: 

t t 

i t • = ( A 3 t  A:~ it'dt)/(A{--A,S d--~t). 
o o 

(11) 

The value of ~t satisfying (II) is 

it = ito = (A, • VA~ +4Aa(A; + A4))/2(A1 + Aa). ( 1 2 )  

In order to choose the sign of the root, we examine  the l imi t ing  case of independent heat  and mass transfcr, cor-  
responding to Ko* = Pn = 0. in this case, from (9) and (10) ~r - -  (12amt/Lu)V$ and ~o = (12amt) '/2, which 
gives it = LH 1/2. Thus, the "minus" sign in front of the root in (12) should be discarded. 

When certain appropriate constraints are satisfied, the in i t ia l  condition p -< 1 turns out to be equivalent  to 

Case ~ > I: 

A~ + A8 1 + Ko* 
p -  - - -  Lu -< I. (18) 

A: + A4 l-l- Lu Pn (1.+ Ko*) 

Carrying out calculat ions s imilar  to the foregoing we obtain 

t 

,It I f ' " ,  
o 

t 

~o=[12(A3t--A4.1 itdt)] V' , 
o 

t t 

0 0 

(14) 

(15) 

(16) 
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Equation (16) is satisfied by 

~ = ~0 - - - ' ( 'A~- t -  VA]+4Aa(A2+Aa))/2A~. (17) 

The condition g > 1 is equivalent to: 

p = L u ( l +  Ko*)/[1 + Lu Pn (1 + K0*)] > 1. (is) 

Thus. the parameter p, which is a function of the parameters Lu, Pn, and Ko*, determines, in a manner similar 
to the Prandti number in the theory of the dynamic boundary layer, the relationship between the values and the veloci-  
ties of propagation of the thermal layer and the mass transfer potential layer, i . e . ,  in the last analysis, it characterises 
the inertia of the heat and mass transfer field for nonstationary problems. Thus when 9 ~ 1 the mass potential field 
propagates faster than the temperature field, and the case p ~ 1 corresponds to faster propagation of the temperature 
field, and, finally, when p --= I the two fields are similar. It is easy to see that when there are no changes of phase 
and no thermal gradient mass transfer (which is equivalent to no cross terms in the Onsager equations), the parameter 
p becomes the Lykov number Lu. The asymmetry of the potential fields when LU = 1, noted in [1], is explained by 
the additional effect of the Pn and Ko* numbers on the inertia of both fields. 

The final solution of the above problem may be obtained by substituting values of ~ from (12) or (17) followed by 
substitution in (9)-(10) or (14)-(15), respectively. The profiles of the potentials T and @ wilt then be determined by the 
relations (8) with the appropriate values for ~ r  and ~o �9 

We shall now turn to the mote general case in which the coefficients Ai depend on the heat and mass transfer 
potentials: A i = Ai(e  ), T). The linear problem, with coefficients A i depending on the coordinates and time, may be 
similarly examined. In this case we shall assign boundary conditions of the first kind, with given constant temperature 
at the boundary of the half-space and a constant mean value for  the mass transfer potential inside the layer ~e �9 

1 

T(0, t ) = 1 ;  .fOd~o -- 1. (19) 
o 

The expressions for the approximate polynomials take the form: 

T(x, t ) =  (1-- 'qr)2; 0(x,  t ) = 3 ( 1 - - - ~ o )  2. (20) 

When V -< 1 

t 
r = [12 .! (A1 + 3Adl~)lx=o dt] '/2, (21) 

o 

~o = 2 [(~A~ 4- 3A3)[x=o 4- (~  - -  1) &rx=aol d t  . (22) 

For determining g we have the integral relation 

t 
.I [(~ A4 -t- aA3)[,=o -I- (~2 _ 1) Aals dt 

~ _  0 (23) 
- -  t 

3 f (A1 + 3AJ )rx=. dt 
0 

The value of/~ may be determined for a specified form of the functional dependence Ai(e,  T), for example, by 
the method of successive approximations. If all the A i are assumed constant in the first approximation, then, to de- 
termine ~, we obtain as before a quadratic equation which may easily be solved. 

When ~ > I 

gr -~ {12 i [ (Al + 3A2/~)lx=o + ~2 a-----IT dt , 
(24) 
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t ~ Ada) l~=0dt }'/' ao = 12 ~ (As'q- 
0 

For determining g we have an integral relation of the type 

.(25) 

t 
j" (As-+- ~ A~/3L=. dt 

~2 = o 

o '[ [(A~ 4-3&/~)1;=.+ 3(lp2-- ~') A, ~=,r at 

It is evident that when/1 = 1, Eqs. (23) and (26) coincide. 

Since it is necessary, in obtaining the final results, to know the value of the potential @ at the surface, we proceed 
as follows. Having assigned a definite form of the dependence Ai(T, e )  and having determined the parameters }~, ~r 
and ~o as functions of e(O, t), we can find the unknown quantity @(0, t) from the second relation of (20), putting x = 0 
and solving the resulting algebraic equation. 

We note that the above-mentioned method is also applicable, without any serious limitations, to the investigation 
o f  heat  and mass transfer processes in binary gas mixtures. 

NOTATION 

T, e -- dimensionless potentials of heat and mass transfer: A i -  coefficients characterizing transfer of the cor- 

responding entity under the action of the motive force; A1 =am ~(-U:-'.. + Fe t, A~. = a m Ko*, A3= am,  A , =  a m Pn; a m 

a m "  coefficient of mass transfer potentialconduction Lu, Pn, Ko*, Fe -- Lykov, Posnov, Kossovieh, and Fedorov numbers, 

respectively; ~r,  ~e - thermal layer and layer of mass transfer potential; ~ = ~0 /~r ,  ~r ----- x / ~ r ,  ~1o --- x/~e ; P -  

modified inertia parameter of coupled heat and mass transfer processes; x - coordinate; t - t ime. 
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